证明了方程“大概”不存在整数解
来源:河南古达科技有限公司    时间: 2018-10-26 09:48   点击:    作者:admin
库默尔的工作给数学家们带来了前所未有的希望和迷茫。一方面,费马大定理证明因为库默尔发明的工具和理念而取得惊人的进展;而另一方面,库默尔的手法又让证明大定理的希望变得更加渺茫。沿着库默尔开创的道路走下去,既看不到终点,也看不清方向,大定理的

  库默尔的工作给数学家们带来了前所未有的希望和迷茫。一方面,费马大定理证明因为库默尔发明的工具和理念而取得惊人的进展;而另一方面,库默尔的手法又让证明大定理的希望变得更加渺茫。沿着库默尔开创的道路走下去,既看不到终点,也看不清方向,大定理的证明还被笼罩在一片迷雾之中。曙光,还将留给20世纪的晨曦。
 
  到了20世纪初,费马大定理虽然在数学家心目中占据着独特的位置,却已经渐渐失去了光泽。解决这个古老问题的尝试被私下嘲讽为炼金术一般,只有疯子和偏执狂才会去做这样荒谬的梦。此时,只有一剂强心针才能挽救人们对费马大定理的信心。
 
  1908年,对大定理的研究因为达姆斯塔特的一位德国实业家沃尔夫斯凯(Wolfskehl)而得到新生。这更为费马大定理增添了不可思议的传奇色彩。
 
  沃尔夫斯凯尔在大学里学过数学,且对数论情有独钟。毕业后,他一方面继续家族的经商,一方面仍与职业数学家保持着联系。
 
  不久,沃尔夫斯凯尔在向一位漂亮的年轻女性求爱时遭到了拒绝。自尊心受到强烈挫伤的他在失望下决定自杀。沃尔夫斯凯尔选好了自杀的日子,写下了遗嘱,并在自杀的那一天早早安排好了当天所有事情。眼看着自杀的吉时良辰还没到,为了消磨剩下的几个小时,他到图书馆开始翻阅数学书籍。
 
  尽管如此,在研究费马大定理的过程中,数学家们还是创造了许多新的理论和方法,特别是计算机的诞生也为费马大定理的证明提供另一种思路。1955年,n<4002的情形已经得到证实。此后,随着计算机能力的加强,n的值也被迅速推进。1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。然而,从有限到无穷,仍然是无法跨越的险峰天堑,人们在缓慢而艰难地推进着定理的证明。
 
  三百年来,在探索大定理出路的小径上,已经留下无数英雄孤独的身影。大定理的每一小步,都是数学史上浓重的一笔。没有人知道,这条小路会将人们带向何方。美国作家索洛曾说:美国铁路的每一根枕木下面都横卧着一具爱尔兰工人的尸首。正是早期无数人的血汗铸就了今日的文明成就。同样,在征服费马大定理三百多年的历程里,也有众多人类最耀眼的科学明星一同铺就通往明天的铁路。
 
  费马本人对大定理虽然一笔带过,却也留下了自己对这个问题的初步思考。他在另外一篇文章里,简单叙述了如何证明当“n=4”的时候,方程“(x^4)+(y^4)=(z^4)”不存在正整数解。不过费马对大定理的研究也止步于此,他并没有给出对其他自然数n的相关证明。在听闻费马的评注之后,德国数学家莱布尼茨(Leibniz)也独立证明了“n=4”的情形,证明的手法与费马如出一辙。
 
  在费马大定理提出后,18世纪最伟大的数学家之一欧拉(Euler)成为取得重大进展的第一人。1770年,欧拉证明了当“n=3”的时候,费马大定理成立。
 
  此后,人们对费马大定理的证明进入了漫长的黑暗期。到了19世纪初,费马大定理已经成为数论中最著名的问题。就在人们一筹莫展的时候,一位年轻的法国女数学家索菲·热尔曼(Sophie Germain)带来了激动人心的突破。她对一类被后人称为热尔曼素数的自然数,证明了方程“大概”不存在整数解。
 
  1825年,德国数学家狄利克雷(Dirichlet)和法国数学家勒让德(Legendre)使用热尔曼的方法成功地证明了大定理对“n=5”的时候成立。
 
  14年后的1839年,另一位法国数学家拉梅(Lame)在热尔曼的工作进一步优化的基础上,一举证明了“n=7”的情形。